Thursday, 30 April 2015

Customized Web Data Extraction Solutions for Business

As you begin leading your business on the path to success, competitive analysis forms a major part of your homework. You have already mobilized your efforts in finding the appropriate website data scrapping tool that will help you to collect relevant data from competitive websites and shape them up into useable information. There is however a need to look for a customized approach in your search for Data Extraction tools in order to leverage its benefits in the best possible way.

Off-the-shelf Tools Impede Data Extraction

 In the current scenario, Internet Technologies are evolving in abundance. Every organization leverages this development and builds their websites using a different programming language and technology. Off-the-shelf Website Data extraction tools are unable to interpret this difference. They fail to understand the data elements that need to be captured and end up in gathering data without any change in the software source codes.

As a result of this incapability in their technology, off-the-shelf solutions often deliver unclean, incomplete and also inaccurate data. Developers need to contribute a humungous effort in cleaning up and structuring the data to make it useable. However, despite the time-consuming activity, data seldom metamorphoses into the desired information. Also the personnel dealing with the clean-up process needs to have sufficient technical expertise in order to participate in the activities. The endeavor however results in an impediment to the whole process of data extraction leaving you thirsting for the required information to augment business growth.

Understanding how Web Extraction tools work

Web Scrapping tools are designed to extract data from the web automatically. They are usually small pieces of code written using programming languages such as Python, Ruby or PHP depending upon the expertise of the community building it. There are however several single-click models available which tends to make life easier for non-technical personnel.

The biggest challenge faced by a successful web extractor tool is to know how to tackle the right page and the right elements on that page in order to extract the desired information. Consequently, a web extractor needs to be designed to understand the anatomy of a web page in order to accomplish its task successfully. It should be designed to interpret the meaning of HTML elements like , table rows () within those tables, and table data (<td>) cells within those rows in order to extract the exact data. It will also be interfacing with the

element which are blocks of text and know how to extract the desired information from it.

Customized Solutions for your business

 Customized Solutions are provided by most Data Scraping experts. These software's help to minimize the cumbersome effort of writing elaborate codes to successfully accomplish the feat of data extraction. They are designed to seamlessly search competitive websites,identify relevant data elements, and extract appropriate data that will be useful for your business. Owing to their focused approach, these tools provide clean and accurate data thereby eliminating the need to waste valuable time and effort in any clean-up effort.

Most customized data extraction tools are also capable of delivering the extracted data in customized formats like XML or CSV. It also stores data in local databases like Microsoft Access, MySQL, or Microsoft SQL.

Customized Data scraping solutions therefore help you take accurate and informed decisions in order to define effective business strategies.

Source: http://scraping-solutions.blogspot.in/2014_07_01_archive.html 

Tuesday, 28 April 2015

Web Scraping – An Illegal Activity or Simple Data Collection?

Gone are the days when skillful extraction of information pertaining to real estate such as foreclosures, homes for sale, or mortgage records was considered difficult. Now, it is not only easy to extract data from real estate websites but also scrape real estate data on a consistent basis to add more value to your portal, or ensure that updated data is available to your visitors at all times. From downloading actual scanned documents in the form of PDF files to scraping websites for deeds or mortgages, smartly designer data extraction tools can do it all.

However, the one question that still manages to come to the front in the minds of those who scrape real estate listings and others are whether the act is illegal in nature or a simple way of collecting data.

Take a look.

Web Scraping—What is it?

Generally speaking, web scraping refers to programs that are designed to simulate human internet surfing and access websites on behalf of their users. These tools are effective in collecting large quantities of data that are otherwise difficult for end users to access. They process semi-structured or unstructured data pages of targeted websites and transform available data into a more structured format that can be extracted or manipulated by the user easily.

Quite similar to web indexing that is used by search engines, the end motivation of web scraping is much different. While web indexing makes search engines far more efficient, the latter is used for reasons like market research, change detection, data monitoring, or in some events, theft. But then, it is not always a bad thing. You just need to know if a website allows web scraping before proceeding with the act.

Fine Line between Stealing and Collecting Information

Web scraping rides an extremely fine line between the acts of collecting relevant information and stealing the same. The websites that have copyright disclosure statements in place to protect their website information are offended by outsiders raiding their data without due permission. In other words, it amounts to trespassing on their portal, which is unacceptable—both ethically and legally. So, it is very important for you to read all disclosure statements carefully and follow along in the right way. As web scraping cases may turn into felony offenses, it is best to guard against any kind of scrupulous activity and take permission before scraping data.

The Good News

However, all is not grey in data extraction processes. Reputed agencies are helping their clients scrape valuable data for gaining more value through legal means and carefully used tools. If you are looking for such services, then do get in touch with a reliable web scraping company of your choice and take your business to the next levels of success.

Source: https://3idatascraping.wordpress.com/2015/03/11/web-scraping-an-illegal-activity-or-simple-data-collection/

Saturday, 25 April 2015

Three Common Methods For Web Data Extraction

Probably the most common technique used traditionally to extract data from web pages this is to cook up some regular expressions that match the pieces you want (e.g., URL's and link titles). Our screen-scraper software actually started out as an application written in Perl for this very reason. In addition to regular expressions, you might also use some code written in something like Java or Active Server Pages to parse out larger chunks of text. Using raw regular expressions to pull out the data can be a little intimidating to the uninitiated, and can get a bit messy when a script contains a lot of them. At the same time, if you're already familiar with regular expressions, and your scraping project is relatively small, they can be a great solution.

Other techniques for getting the data out can get very sophisticated as algorithms that make use of artificial intelligence and such are applied to the page. Some programs will actually analyze the semantic content of an HTML page, then intelligently pull out the pieces that are of interest. Still other approaches deal with developing "ontologies", or hierarchical vocabularies intended to represent the content domain.

There are a number of companies (including our own) that offer commercial applications specifically intended to do screen-scraping. The applications vary quite a bit, but for medium to large-sized projects they're often a good solution. Each one will have its own learning curve, so you should plan on taking time to learn the ins and outs of a new application. Especially if you plan on doing a fair amount of screen-scraping it's probably a good idea to at least shop around for a screen-scraping application, as it will likely save you time and money in the long run.

So what's the best approach to data extraction? It really depends on what your needs are, and what resources you have at your disposal. Here are some of the pros and cons of the various approaches, as well as suggestions on when you might use each one:

Raw regular expressions and code

Advantages:

- If you're already familiar with regular expressions and at least one programming language, this can be a quick solution.

- Regular expressions allow for a fair amount of "fuzziness" in the matching such that minor changes to the content won't break them.

- You likely don't need to learn any new languages or tools (again, assuming you're already familiar with regular expressions and a programming language).

- Regular expressions are supported in almost all modern programming languages. Heck, even VBScript has a regular expression engine. It's also nice because the various regular expression implementations don't vary too significantly in their syntax.

Disadvantages:

- They can be complex for those that don't have a lot of experience with them. Learning regular expressions isn't like going from Perl to Java. It's more like going from Perl to XSLT, where you have to wrap your mind around a completely different way of viewing the problem.

- They're often confusing to analyze. Take a look through some of the regular expressions people have created to match something as simple as an email address and you'll see what I mean.

- If the content you're trying to match changes (e.g., they change the web page by adding a new "font" tag) you'll likely need to update your regular expressions to account for the change.

- The data discovery portion of the process (traversing various web pages to get to the page containing the data you want) will still need to be handled, and can get fairly complex if you need to deal with cookies and such.

When to use this approach: You'll most likely use straight regular expressions in screen-scraping when you have a small job you want to get done quickly. Especially if you already know regular expressions, there's no sense in getting into other tools if all you need to do is pull some news headlines off of a site.

Ontologies and artificial intelligence

Advantages:

- You create it once and it can more or less extract the data from any page within the content domain you're targeting.

- The data model is generally built in. For example, if you're extracting data about cars from web sites the extraction engine already knows what the make, model, and price are, so it can easily map them to existing data structures (e.g., insert the data into the correct locations in your database).

- There is relatively little long-term maintenance required. As web sites change you likely will need to do very little to your extraction engine in order to account for the changes.

Disadvantages:

- It's relatively complex to create and work with such an engine. The level of expertise required to even understand an extraction engine that uses artificial intelligence and ontologies is much higher than what is required to deal with regular expressions.

- These types of engines are expensive to build. There are commercial offerings that will give you the basis for doing this type of data extraction, but you still need to configure them to work with the specific content domain you're targeting.

- You still have to deal with the data discovery portion of the process, which may not fit as well with this approach (meaning you may have to create an entirely separate engine to handle data discovery). Data discovery is the process of crawling web sites such that you arrive at the pages where you want to extract data.

When to use this approach: Typically you'll only get into ontologies and artificial intelligence when you're planning on extracting information from a very large number of sources. It also makes sense to do this when the data you're trying to extract is in a very unstructured format (e.g., newspaper classified ads). In cases where the data is very structured (meaning there are clear labels identifying the various data fields), it may make more sense to go with regular expressions or a screen-scraping application.

Screen-scraping software

Advantages:

- Abstracts most of the complicated stuff away. You can do some pretty sophisticated things in most screen-scraping applications without knowing anything about regular expressions, HTTP, or cookies.

- Dramatically reduces the amount of time required to set up a site to be scraped. Once you learn a particular screen-scraping application the amount of time it requires to scrape sites vs. other methods is significantly lowered.

- Support from a commercial company. If you run into trouble while using a commercial screen-scraping application, chances are there are support forums and help lines where you can get assistance.

Disadvantages:

- The learning curve. Each screen-scraping application has its own way of going about things. This may imply learning a new scripting language in addition to familiarizing yourself with how the core application works.

- A potential cost. Most ready-to-go screen-scraping applications are commercial, so you'll likely be paying in dollars as well as time for this solution.

- A proprietary approach. Any time you use a proprietary application to solve a computing problem (and proprietary is obviously a matter of degree) you're locking yourself into using that approach. This may or may not be a big deal, but you should at least consider how well the application you're using will integrate with other software applications you currently have. For example, once the screen-scraping application has extracted the data how easy is it for you to get to that data from your own code?

When to use this approach: Screen-scraping applications vary widely in their ease-of-use, price, and suitability to tackle a broad range of scenarios. Chances are, though, that if you don't mind paying a bit, you can save yourself a significant amount of time by using one. If you're doing a quick scrape of a single page you can use just about any language with regular expressions. If you want to extract data from hundreds of web sites that are all formatted differently you're probably better off investing in a complex system that uses ontologies and/or artificial intelligence. For just about everything else, though, you may want to consider investing in an application specifically designed for screen-scraping.

As an aside, I thought I should also mention a recent project we've been involved with that has actually required a hybrid approach of two of the aforementioned methods. We're currently working on a project that deals with extracting newspaper classified ads. The data in classifieds is about as unstructured as you can get. For example, in a real estate ad the term "number of bedrooms" can be written about 25 different ways. The data extraction portion of the process is one that lends itself well to an ontologies-based approach, which is what we've done. However, we still had to handle the data discovery portion. We decided to use screen-scraper for that, and it's handling it just great. The basic process is that screen-scraper traverses the various pages of the site, pulling out raw chunks of data that constitute the classified ads. These ads then get passed to code we've written that uses ontologies in order to extract out the individual pieces we're after. Once the data has been extracted we then insert it
into a database.

Source: http://ezinearticles.com/?Three-Common-Methods-For-Web-Data-Extraction&id=165416

Wednesday, 22 April 2015

How to Properly Scrape Windows During The Cleaning Process

Removing ordinary dirt such as dust, fingerprints, and oil from windows seem simple enough. However, sometimes, you may find stubborn caked-on dirt or debris on your windows that cannot be removed by standard window cleaning techniques such as scrubbing or using a squeegee. The best way to remove caked-on dirt on your windows is to scrape it off. Nonetheless, you have to be extra careful when you are scraping your windows, because they can be easily scratched and damaged. Here are a number of rules that you need to follow when you are scraping windows.

Rule No. 1: It is recommended that you use a professional window scraper to remove caked-on dirt and debris from your windows. This type of scraper is specially made for use on glass, and it comes with certain features that can prevent scratching and other kinds of damage.

Rule No. 2: It is important to inspect your window scraper before using it. Take a look at the blade of the scraper and make sure that it is not rusted. Also, it must not be bent or chipped off at the corners. If you are not certain whether the blade is in a good enough condition, you should just play it safe by using a new blade.

Rule No. 3: When you are working with a window scraper, always use forward plow-like scraping motions. Scrape forward and lift the scraper off the glass, and then scrape forward again. Try not to slide the scraper backwards, because you may trap debris under the blade when you do so. Consequently, the scraper may scratch the glass.

Rule No. 4: Be extra cautious when you are using a window scraper on tempered glass. Tempered glass may have raised imperfections, which make it more vulnerable to scratches. To find out if the window that you are scraping is made of tempered glass, you have to look for a label in one of its corners.

Window Scraping Procedures

Before you start scraping, you have to wet your window with soapy water first. Then, find out how the window scraper works by testing it in a corner. Scrape on the same spot three or four times in forward motion. If you find that the scraper is moving smoothly and not scratching the glass, you can continue to work on the rest of the window. On the other hand, if you feel as if the scraper is sliding on sandpaper, you have to stop scraping. This indicates that the glass may be flawed and have raised imperfections, and scraping will result in scratches.

After you have ascertained that it is safe to scrape your window, start working along the edges. It is best that you start scraping from the middle of an edge, moving towards the corners. Work in a one or two inch pattern, until all the edges of the glass are properly scraped. After that, scrape the rest of the window in a straight pattern of four or five inches, working from top to bottom. If you find that the window is beginning to dry while you are working, wet it with soapy water again.

Source: http://ezinearticles.com/?How-to-Properly-Scrape-Windows-During-The-Cleaning-Process&id=6592930

Saturday, 18 April 2015

Data Mining and Predictive Analysis

Data collection and curing is the core foundation of most businesses. Database building thus is an important function and activity where enterprises invest heavily. With information now available on the Internet and easily obtained, it raises the importance of having professionals who crawl data and offer web scraping services.

Once the data is accessed, though, it is important to filter out the relevant data based on the business need. Although Many DaaS provider convert the unstructured web data into meaningful structured data it is recommended to be internally equipped to use the data to its maximum.

This understanding has given rise to the field of Data Mining. Data Mining is designed to explore large amounts of data in search of consistent patterns and connections between the variables and validate the findings by applying the detected patterns to the new sets of the data. Once these connections are established and understood, the end goal is to be able to predict the possible outcomes using predictive analysis techniques.

Together, both Data Mining and predictive analysis aid in making marketing campaigns more efficient. While predictive analysis helps simulate and understand what may happen, data mining helps identify exciting data patterns and connections.

The process of Data Mining and Predictive analysis consists of 3 steps

Exploration


Once a database is compiled, it needs to be cleaned, analysed and potential connections need to be built. This process involves filtering the relevant data and identifying the possible predictors. Data Exploration also sets a premise for preliminary feature selection to manage number of variables. This data is then prepared for statistical analysis using a wide variety of graphical and statistical parameters. This helps identify the most relevant variables and setups the predictive models to be built.

Data mining process

Validation


Next comes building various models and choosing the most relevant ones. This decision is based on their possible predictive performance and of being able to produce stable results across all the samples. Simple as it sounds, to truly get the results, all possible models must be treated with data to simulate scenarios. The model with most stable statistical feature is validated.

Application

Once the relevant models are finalised, the same is applied to new data to understand and predict the estimated outcomes. Application of data models is an ongoing and complex process since every new dataset needs to be configured in the model.

Data Mining and predictive analysis essentially involves blending statistical methodology where the traditional statistics machine learning and complex algorithms. This greatly increases the need for efficient and skilled data handlers. This could include data analysts and scientists.

See how you can become data scientist here:

Data crunchers use data mining and predictive analysis actively to get an edge in the big data management. Database platforms like Hadoop assist in database management and large-scale distribution. But the costs involved in setting up data centres and big data management capacity are high. Budgets allocated within the enterprise are more project-focussed and analytics budgets are usually limited. Quite often, big data and analytics project fail to launch because of this problem! The other problem is that to run effective predictive models, data requires to be handled by scientists with experience. Finding and setting together a technologically-advanced team is a daunting task most enterprises face outside the tech domain.

Predictive Analysis model


A predictive analysis model is essentially predicting the all possible outcomes from a given set of data. Here are a few steps that can be taken to help build and identify the “ideal” predictive analysis model. These steps more or less mirror the usual statistical methodology of building a test model.

Defining an objective

This is the first and a critical step. Unless the objective is identified and defined there can be no concrete results since there wouldn’t be clarity to compare the final outcome to the expected result. It also helps understand the scope of the project.

Preparing the data

This is more to do with data mining. Historic data used for training the model is scattered across multiple platforms and sources. To compound the problem, data can be unstructured with possible duplicate accounts and missing values! Data quality determines the quality of the model, and thus it becomes imperative that data is healthy and relevant.

Data Sampling

Once mined, Data is essentially split into 2 parts. One set is for training that is used to build the model and the second is the ‘test’ set that is used to verify the accuracy of the final output. This also helps identify and filter the noise component.

Model Building

Sampling cam equally result in a single algorithm or parallel & connected algorithms. In such a case the data goes through multiple testing and a decision is based on the final output.

Execution

Once a model gets finalised, the other teams in the organization need to be involved to build a deployable model and understand its impact on the overall business.

The possibilities with Data mining & Predictive analysis are huge. It also gives a huge room for learning and experimenting. There are several tools available in the industry to aid through all the steps of data mining and predictive analysis. The combination of human expertise and intellect along with the help of the available tools and the overall cooperation within the multiple channels within the organization essentially ensures a stronger grip on the ability to build a solid predictive model.

When used together, predictive analytics and data mining help marketing professionals anticipate and get ready for customer needs, rather than just reacting to them.

Source: https://www.promptcloud.com/blog/data-mining-and-predictive-analysis/

Tuesday, 7 April 2015

The Nasty Problem with Scraping Results from the Engines

One theme that I've been concerned with this week centers around data transparency in the search engine world. Search engines provide information that is critical to the business of optimizing and growing a business on the web, yet barriers to this data currently force many companies to use methods of data extraction that violate the search engines' terms of service.

Specifically, we're talking about two pieces of information that no large-scale, successful web operation should be without. These include rankings (the position of their site(s) vs. their competitors) for important keywords and link data (currently provided most accurately through Yahoo!, but also available through MSN and in lower quality formats from Google).

Why do marketers and businesses need this data so badly? First we'll look at rankings:

•    For large sites in particular, rankings across the board will go up or down based on their actions and the actions of their competition. Any serious company who fails to monitor tweaks to their site, public relations, press and optimization tactics in this way will lose out to competitors who do track this data and, thus, can make intelligent business decisions based on it.

•    Rankings provide a benchmark that helps companies estimate their global reach in the search results and make predictions about whether certain areas of extension or growth make logical sense. If a company must decide on how to expand their content or what new keywords to target or even if they can compete in new markets, the business intelligence that can be extracted from large swaths of ranking data is critical.

•    Rankings can be mapped directly to traffic, allowing companies to consider advertising, extending their reach or forming partnerships

And, on the link data side:

•    Temporal link information allows marketers to see what effects certain link building, public relations and press efforts have on a site's link profile. Although some of this data is available through referring links in analytics programs, many folks are much more interested in the links that search engines know about and count, which often includes many more than those that pass traffic (and also ignores/doesn't count some that do pass traffic).

•    Link data may provide references for reputation management or tracking of viral campaigns - again, items that analytics don't entirely encompass.

•    Competitive link data may be of critical importance to many marketers - this information can't be tracked any other way.

I admit it. SEOmoz is a search engine scraper - we do it for our free public tools, for our internal research and we've even considered doing it for clients (though I'm seriously concerned about charging for data that's obtained outside TOS). Many hundreds of large firms in the search space (including a few that are 10-20X our size) do it, too. Why? Because search engine APIs aren't accurate.

Let's look at each engine's abilities and data sources individually. Since we've got a few hundred thousand points of data (if not more) on each, we're in a good position to make calls about how these systems are working.

Google (all APIs listed here):

•    Search SOAP API - provides ranking results that are massively different from almost every datacenter. The information is often less than useless, it's actually harmful, since you'll get a false sense of what's happening with your positions.

•    AJAX Search API - This is really designed to be integrated with your website, and the results can be of good quality for that purpose, but it really doesn't serve the job of providing good stats reporting.

•    AdSense & AdWords APIs - In all honesty, we haven't played around with these, but the fact that neither will report the correct order of the ads, nor will they show more than 8 ads at a time tells me that if a marketer needed this type of data, the APIs wouldn't work.

Yahoo! (APIs listed here):

•    Search API - Provides ranking information that is a somewhat accurate map to Yahoo!'s actual rankings, but is occassionally so far off-base that they're not reliable. Our data points show a lot more congruity with Yahoo!'s than Google's, but not nearly enough when compared with scraped results to be valuable to marketers and businesses.

•    Site Explorer API - Shows excellent information as far as number of pages indexed on a site and the link data that Yahoo! knows about. We've been comparing this information with that from scraped Yahoo! search results (for queries like linkdomain: and site:) and those at the Site Explorer page and find that there's very little quality difference in the results returned, though the best estimate numbers can still be found through a last page search of results.

•    Search Marketing API - I haven't played with this one at all, so I'd love to hear comments from those who have.

MSN:

•    Doesn't mind scraping as long as you use the RSS results. We do, we love them and we commend MSN for giving them out - bravo! They've also got a web search SDK program, but we've yet to give it a whirl. The only problem is the MSN estimates, which are so far off as to be useless. The links themselves, though, are useful.

Ask.com

•    Though it's somewhat hidden, the XML.Teoma.com page allows for scraping of results and Ask doesn't seem to mind, though they haven't explicitly said anything. Again, bravo! - the results look solid, accurate and match up against the Ask.com queries. Now, if Ask would only provide links

I know a lot of you are probably asking:

•    "Rand, if scraping is working, why do you care about the search engines fixing the APIs?"

•    The straight answer is that scraping hurts the search engines, hurts their users and isn't the most practical way to get the data. Let me give you some examples:

•    Scraped queries have to look as much like real users as possible to avoid detection and banning - thus, they affect the query data that search engineers use to improve web search.

•    These queries also hit advertisers - falsifying the number of "real" impressions that advertisers see and lowering their CTRs unnaturally.

•    They take up search engine resources and though even the heaviest scraping barely impacts their server loads, it's still an annoyance.

•    With all these negative elements, and so many positive incentives to have the data, it's clear what's needed - a way for marketers/businesses to get the data they need without hurting the search engines. Here's how they can do it:

•    Provide the search ranking position of a site in the referral string - this works for ranking data, but not for link data and since Yahoo! (and Google) both send referrals through re-directs at times, it wouldn't be a hard piece to add.

•    Make the API's accurate, complete and unlimited

•    If the last option is too ambitious, the search engines could charge for API queries - anyone who needs the data would be more than happy to pay for it. This might help with quality control, too.

•    For link data - serve up accurate, wholistic data in programs like Google Sitemaps and Yahoo! Search Submit (or even, Google Analytics). Obviously, you'd only get information about your own site after verifying.

I've talked to lots of people at the search engine level about making changes this week (including Jeremy, Priyank, Matt, Adam, Aaron, Brett and more). I can only hope for the best...

Source: http://moz.com/blog/the-nasty-problem-with-scraping-results-from-the-engines